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Tune Measurement – Classical Approach
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Tune Measurement – Classical Approach
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§ The LHC bunch length (4σ) is about 1 ns and the 
corresponding bunch spectrum cut-off is about 500 MHz.

§ With just one bunch in the machine, the revolution spectral 
lines are spaced by 11 kHz, so there are some 50 000 of 
these, and some 100 000 betatron lines.

§ When using the classical “one line filtering method”, ones 
looks on (approximately) 0.00001 of the spectral content.

§ This results in very small signals, requiring low noise amplifiers 
and mixers, which have small dynamic ranges. They can be 
saturated by a huge revolution content.

§ Resonant PU = larger signals. Does not work for single 
bunches (bunches pop-up in the PU not often enough to 
maintain the resonance)
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Direct Diode Detection – the Principle
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Direct Diode Detection – the Principle

τ = 10 T

τ = 100 T

s td( )

Rf

RfRe

Re

Cf

Cf

s td1( )s te1( )

s td2( )s te2( )

s tb1( )

s tb2( )

Cpu

Cpu

( )
( ))p2cos(1)1()()(

)p2cos(1)1()()(

2

1

tftsts
tftsts

bbb

bbb

βα
βα

−−=
++=

s td( )

s te1( )

s te2( )

Re

Re

Rf

RfCf

Cf

s td1( )

s td2( )

PU

D

D

beam relive offset α = 0.1
betatron oscillation relative amp. β = 0.05
simulated tune value q = 0.1
storage capacitor Cf = Cpu (PU electrode C)



3D, BBQ, Some SPS & PS 2004 Results 6M.Gasior, CERN-AB-BDI

Direct Diode Detection – the Principle
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Direct Diode Detection – the Principle

α = 0, β = 0.01
q = 0.1, Cf = Cpu
τ = 100 T

4 bunches

α = 0, β = 0.05
q = 0.1, Cf = Cpu

α = 0, β = 0.01
q = 0.1, τ = 100 T
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Direct Diode Detection
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Direct Diode Detection
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Direct Diode Detection
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Direct Diode Detection
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Direct Diode Detection – SNR

Vn
2

Rf

InD

1
2

InR

VnA

InA

Cf

s td( )Rf

RfRe

CfCpu

CfCpu D

D

Re

+
DA
−

s td1( )s te1( )

s td2( )s te2( )

s tb1( )

s tb2( )

τ = 100 T

22

222

2

)p2(

4
2

2
ff

nA
f

RDf

nAn CRqT

I
R
k

IeRT

VV
+











+

Θ
+

+=

( )( )
q

Tq
CC

CT
G

fpu

pu
S 2pj1

/2pjexp1

p2 +
−−−

⋅
+

⋅=
ττ

σ

( )

22

222

2

2

)p2(

42

2pj1

)(2pjexp1

p

ff

nA
f

RDf

nA

ff

fpu

puffnC

D

CRqT

I
R
kIeRT

V

q

CRTq

CC

CCRTV

G

+











+Θ+

+

+

−−−

+
⋅

=

−

σ



3D, BBQ, Some SPS & PS 2004 Results 13M.Gasior, CERN-AB-BDI

Direct Diode Detection – SNR
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BBQ Architecture
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BBQ Architecture

§ Revolution frequency is attenuated by some 100 dB 
over an octave (fr/2 is still within the bandwidth)

§ The dynamic range of the first amplifier is some 15 V
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SPS BBQ Measurements – Transverse Damper Noise
One LHC pilot bunch,

intensity ca 5e9
Damper system OFF Damper system ON
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SPS BBQ Measurements – Mains Ripple in the Beam Spectrum

72 LHC bunches,
intensity ca 1e11,
coasting (RF on)
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SPS BBQ Measurements – Mains Ripple in the Beam Spectrum
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SPS BBQ Measurements – LHC Collimator Impedance

§ The top picture shows spectra from the measurement at 4 :40 (gap of 1.96 mm) 
with log color scaling. The bottom one – with linear color scaling. 

§ BBQ signal samples were acquired with a 24-bit USB sound card at 48 kS/s 
rate (16-bit samples stored).

§ Each spectrum segment is calculated from 96000 Hanning windowed samples, 
so the FFT bin spacing is 0.5 Hz. Two adjacent data segments overlap by 50%, 
so there is one spectrum segment per second. These parameters are a 
compromise between the frequency and time resolution required by the 
measurements.

§ "Collimator in" and "collimator out" spectra are grouped by calculating an RMS 
sum. For the discussed measurement this gives three "in" and two "out" 
spectra.

§ For each RMS summed spectra is evaluated an RMS center of gravity of the 
main distribution, within a few Hz bandwidth to not take into account the 
distribution tails. In this way there are produced five frequency numbers.

§ Out of these 5 numbers there are calculated 4 frequency differences.

§ Out of these differences there are calculated a mean and a standard deviation. 

§ The mean is considered as the frequency change due the collimato r movement 
and the standard deviation is considered as the measurement error estimate.

§ The procedure is used to calculate 5 frequency changes for each of two 
measurement series. For more difficult cases it is taken longer time record at 
the expense of much longer PC processing time.

§ Note that the achieved resolution is a consequence of a very long observation 
time. For a 150 s record one stores some 7 millions of samples, corresponding 
to some 6.5 millions of turns. This is only possible with continuous beam 
excitation, self-excitation in this case.
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SPS BBQ Measurements – LHC Collimator Impedance

f [Hz]

6053.43

6063.59

6053.80

6064.68

6053.97

mean
10.4 Hz

2.4×10-4 fr

st. dev.
0.5 Hz

1.2×10-5 fr

∆f [Hz]

10.16

9.80

10.88

10.71
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SPS BBQ Measurements – LHC Collimator Impedance

Collimator gap @ time

§ 4.86 mm @ 3:36
§ 3.86 mm @ 3:45
§ 2.86 mm @ 4:01
§ 2.26 mm @ 4:22
§ 1.96 mm @ 4:40
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SPS BBQ Measurements – LHC Collimator Impedance

Collimator gap @ time

§ 3.86 mm @ 5:30
§ 2.86 mm @ 5:38
§ 2.46 mm @ 5:46
§ 2.06 mm @ 5:53
§ 1.86 mm @ 6:05
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SPS BBQ Measurements – LHC Collimator Impedance

Spectra from the meas. of 4:40
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SPS BBQ Measurements – LHC Collimator Impedance

4:01

4:22

4:40

5:46

5:53

6:05



3D, BBQ, Some SPS & PS 2004 Results 25M.Gasior, CERN-AB-BDI

SPS BBQ Measurements – LHC Collimator Impedance
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PS BBQ Measurements – AD Cycle

No explicit excitation
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PS BBQ Measurements – LHC Cycle – Mains Ripple

Q kicker fired every 10 ms
with the minimal strength
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PS BBQ Measurements – LHC Cycle – Mains Ripple
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PS BBQ Measurements – Detector DC Voltages
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BBQ Advantages / Disadvantages

Advantages

§ Sensitivity

§ Virtually impossible to saturate

§ Simplicity

§ No resonant PU, no movable PU, no hybrid, no mixers

§ It can work with any PU

§ Base-band operation guaranties the independence of the 
machine filling pattern

§ Signal conditioning / processing in the base-band is easy 
(powerful components for low frequencies)

§ Flattening out the beam dynamic range (small sensitivity 
to the bunch number)

Disadvantages

§ Operation in the low frequency range

§ It is sensitive to the "bunch majority"

www.cern.ch/gasior/pro/3D-BBQ/3D-BBQ.html
More measurements and other plots 
from the presented measurements can 
be seen on the BBQ web site


